By Topic

A 53-nW 9.12-ENOB 1-kS/s SAR ADC in 0.13-μm CMOS for medical implant devices

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Dai Zhang ; Division of Electronic Devices, Department of Electrical Engineering, Linköping University, SE-581 83 Linköping, Sweden ; Ameya Bhide ; Atila Alvandpour

This paper describes an ultra-low-power SAR ADC in 0.13-μm CMOS technology for medical implant devices. It utilizes an ultra-low-power design strategy, imposing maximum simplicity in ADC architecture, low transistor count, low-voltage low-leakage circuit techniques, and matched capacitive DAC with a switching scheme which results in full-range sampling without switch bootstrapping and extra reset voltage. Furthermore, a dual-supply scheme allows the SAR logic to operate at 400mV. The ADC has been fabricated in 0.13-μm CMOS. In 1.0-V single-supply mode, the ADC consumes 65nW at a sampling rate of 1kS/s, while in dual-supply mode (1.0V for analog and 0.4V for digital) it consumes 53nW (18% reduction) and achieves the same ENOB of 9.12. 24% of the 53-nW total power is due to leakage. To the authors' best knowledge, this is the lowest reported power consumption of a 10-bit ADC for such sampling rates.

Published in:

ESSCIRC (ESSCIRC), 2011 Proceedings of the

Date of Conference:

12-16 Sept. 2011