Cart (Loading....) | Create Account
Close category search window
 

Improving Security of SDDL Designs through Interleaved Placement on Xilinx FPGAs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Velegalati, R. ; ECE Dept., George Mason Univ., Fairfax, VA, USA ; Kaps, J.

Implementations of mathematically secure cryptographic algorithms leak information through side channels during run time. Differential Power Analysis (DPA) attacks exploit power leakage to obtain the secret information. Dynamic and Differential Logic (DDL), one of the popular countermeasures against DPA attacks, tries to achieve constant power consumption thereby decor relating the leakage with the data being processed. Separated Dynamic and Differential Logic (SDDL), a variant of DDL, achieves this goal by duplicating the original design into Direct and Complementary parts which exhibit constant switching activity per clock cycle and have balanced net delays. Traditionally, on Field Programmable Gate Arrays (FPGAs) both parts are placed side-by-side to ensure symmetrical routing. However, due to process variations both parts will have slightly different delays. This limits the effectiveness of SDDL. In this paper we introduce a design flow to achieve interleaved placement of SDDL designs on Xilinx Spartan-3E FPGAs while preserving symmetric routing. We explore several placement configurations with respect to routing and security. The results of our experiments show that a well-balanced placement of SDDL can double the effectiveness of the SDDL countermeasures on FPGAs.

Published in:

Field Programmable Logic and Applications (FPL), 2011 International Conference on

Date of Conference:

5-7 Sept. 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.