By Topic

A Run-Time Adaptive FPGA Architecture for Monte Carlo Simulations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Xiang Tian ; Dept. of Electr. & Electron. Eng., Imperial Coll. London, London, UK ; Bouganis, C.

Field Programmable Gate Arrays (FPGAs) are now considered to be one of the preferred computing platforms for high performance computing applications, such as Monte Carlo simulations, due to their large computational power and low power consumption. Unlike other state-of-the-art computing platforms, such as General Purpose Processors (GPPs) and General Purpose Graphics Processing Units (GPGPU), FPGAs can moreover exploit the applications' requirements with respect to the employed number representation scheme, with the potential to lead to considerable area savings and throughput increases. This work proposes a novel FPGA based architecture for Monte Carlo simulations that monitors and configures the number representation of the system during run-time in order to accommodate the dynamics of the system under investigation, resulting to a considerable boost on the overall performance of the system compared to a conventional system. In order to evaluate the efficacy of the proposed architecture, the GARCH model from the financial industry is considered as a case study. The results demonstrate that an average of ~1.35× throughput per resource unit improvement is achieved compared to conventional parallel arithmetic implementation.

Published in:

Field Programmable Logic and Applications (FPL), 2011 International Conference on

Date of Conference:

5-7 Sept. 2011