Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 12:00 PM ET (12:00 - 16:00 UTC). We apologize for the inconvenience.
By Topic

Nonlinear Switching of Ultrashort Pulses in Multicore Fibers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Min Liu ; Coll. of Commun. Eng., Chongqing Univ., Chongqing, China ; Kin Seng Chiang

Nonlinear switching of ultrashort pulses in two-core, three-core, and four-core optical fibers is analyzed theoretically by solving a set of generalized, linearly coupled nonlinear Schrödinger equations. The analysis takes into account the effects of the coupling coefficient dispersion (or intermodal dispersion) in the fiber, which have been overlooked in previous studies of three-core and four-core fibers. It is shown that the coupling coefficient dispersion can break up ultrashort pulses over a short length of a multicore fiber and consequently deteriorate the switching characteristics. In general, the coupling coefficient dispersion leads to an increase in the switching power and a reduction in the switching contrast and the sharpness of the switching transition. The three-core fiber is more tolerant to the coupling coefficient dispersion and therefore the preferred choice for the implementation of an all-fiber nonlinear optical switch.

Published in:

Quantum Electronics, IEEE Journal of  (Volume:47 ,  Issue: 12 )