By Topic

The Dynamic Gain Modulation Performance of Adjustable Gain-Clamped Semiconductor Optical Amplifiers (AGC-SOA)

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Lin Liu ; Centre for Intelligent Dynamic Communications (CIDCOM), Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, U.K. ; Craig Michie ; Anthony E. Kelly ; Ivan Andonovic

The growth in demand for high bandwidth services has stimulated the deployment of Passive Optical Networks (PONs), directly to the home or to the kerb. In many cases, particularly extended reach PONs which may cover distances of 100 km or more [1], there is the need for low cost reach extension technologies. Semiconductor Optical Amplifiers (SOAs) have a key role in this context, particularly because upstream traffic is commonly carried at 1.3 μm. Upstream traffic in a PON (from the Optical Network Unit, ONU to the Optical Line Terminal, OLT) is normally Time Division Multiplexed (TDM) with a wide variation in path loss arising from differences in transmission distances and splitting losses. The bursty nature of this traffic combined with a wide dynamic range of signal strength ( -15 dBm to -28 dBm-the difference between a very close ONU with a small split ratio and a distant ONU with a high split ratio), places severe demands on the burst mode receiver at the OLT. Conventional fibre amplifiers cannot adjust their gain with packet to packet variations due to their response time. Similarly, conventional SOAs suffer loss of linearity if their bias current and hence gain is rapidly reduced. The paper reports on an adjustable gain-clamped semiconductor optical amplifier (AGC-SOA) designed to maximize the output saturated power while adjusting gain to regulate power differences between packets without loss of linearity. Theoretical modeling predicts that this device is able to modulate gain at nanosecond rates. The analysis is validated experimentally.

Published in:

Journal of Lightwave Technology  (Volume:29 ,  Issue: 22 )