Cart (Loading....) | Create Account
Close category search window
 

Hybrid architecture of multi-robot systems based on formation control and SOM neural networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hernandez-Martinez, E.G. ; Dept. of Ind. Eng., Tecnol. de Estudios Super. de Coacalco, Coacalco, Mexico ; Albino, J.M.F.

The main goal of formation control strategies is to coordinate a robot team to achieve a desired formation pattern. Some applications of formation control, for instance sensing coverage, searching and rescue, transportation of large objects, etc. require to establish the desired positions of the robots according to an strategic and equidistant spatial coverage within the work area or boundary. This paper presents a hybrid architecture where a SOM neural network establishes the strategic positions of a 2D area or perimeter using the formation graph of robots. This information is transmitted online to a low-level control strategy based on artificial potential functions which ensures the convergence to the desired formation and collision avoidance based on decentralized repulsive vector fields instead the common repulsive potential functions. Some numerical simulations with virtual reality show the performance of the control architecture.

Published in:

Control Applications (CCA), 2011 IEEE International Conference on

Date of Conference:

28-30 Sept. 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.