By Topic

The Action Similarity Labeling Challenge

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kliper-Gross, O. ; Dept. of Math. & Comput. Sci., Weizmann Inst. of Sci., Rehovot, Israel ; Hassner, T. ; Wolf, L.

Recognizing actions in videos is rapidly becoming a topic of much research. To facilitate the development of methods for action recognition, several video collections, along with benchmark protocols, have previously been proposed. In this paper, we present a novel video database, the “Action Similarity LAbeliNg” (ASLAN) database, along with benchmark protocols. The ASLAN set includes thousands of videos collected from the web, in over 400 complex action classes. Our benchmark protocols focus on action similarity (same/not-same), rather than action classification, and testing is performed on never-before-seen actions. We propose this data set and benchmark as a means for gaining a more principled understanding of what makes actions different or similar, rather than learning the properties of particular action classes. We present baseline results on our benchmark, and compare them to human performance. To promote further study of action similarity techniques, we make the ASLAN database, benchmarks, and descriptor encodings publicly available to the research community.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:34 ,  Issue: 3 )