Cart (Loading....) | Create Account
Close category search window
 

Layered Object Models for Image Segmentation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Yi Yang ; Dept. of Comput. Sci., Univ. of California at Irvine, Irvine, CA, USA ; Hallman, S. ; Ramanan, D. ; Fowlkes, C.C.

We formulate a layered model for object detection and image segmentation. We describe a generative probabilistic model that composites the output of a bank of object detectors in order to define shape masks and explain the appearance, depth ordering, and labels of all pixels in an image. Notably, our system estimates both class labels and object instance labels. Building on previous benchmark criteria for object detection and image segmentation, we define a novel score that evaluates both class and instance segmentation. We evaluate our system on the PASCAL 2009 and 2010 segmentation challenge data sets and show good test results with state-of-the-art performance in several categories, including segmenting humans.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:34 ,  Issue: 9 )

Date of Publication:

Sept. 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.