By Topic

Multicast Capacity Scaling Laws for Multihop Cognitive Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Cheng Wang ; Dept. of Comput. Sci. & Eng., Tongji Univ., Shanghai, China ; Shaojie Tang ; Xiang-Yang Li ; Changjun Jiang

In this paper, we study multicast capacity for cognitive networks. We consider the cognitive network model consisting of two overlapping ad hoc networks, called the primary ad hoc network (PaN) and secondary ad hoc network (SaN), respectively. PaN and SaN operate on the same space and spectrum. For PaN (or SaN, respectively), we assume that primary (or secondary, respectively) nodes are placed according to a Poisson point process of intensity n (or m, respectively) over a unit square region. We randomly choose ns (or ms, respectively) nodes as the sources of multicast sessions in PaN (or SaN, respectively), and for each primary source vp (or secondary source vs, respectively), we pick uniformly at random nd primary nodes (or md secondary nodes, respectively) as the destinations of vp (or vs, respectively). Above all, we assume that PaN can adopt the optimal protocol in terms of the throughput. Our main work is to design the multicast strategy for SaN by which the optimal throughput can be achieved, without any negative impact on the throughput for PaN in order sense. Depending on nd and n, we choose the optimal one for PaN from two strategies called percolation strategy and connectivity strategy, respectively. Subsequently, we design the corresponding throughput-optimal strategy for SaN. We derive the regimes in terms of n, nd, m, and md in which the upper bounds on multicast capacities for PaN and SaN can be achieved simultaneously. Unicast and broadcast capacities for the cognitive network can be derived by our results as the special cases by letting nd = 1 (or md = 1) and nd = n - 1 (or md = m - 1), respectively, which enhances the generality of this work.

Published in:

Mobile Computing, IEEE Transactions on  (Volume:11 ,  Issue: 11 )