By Topic

Adaptive tracking control for a class of pure-feedback non-linear systems including actuator hysteresis and dynamic uncertainties

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Zhang, X.Y. ; Sch. of Autom., Beijing Univ. of Aeronaut. & Astronaut., Beijing, China ; Lin, Y.

In this study, an adaptive neural network dynamic surface control for a class of pure-feedback non-linear systems with dynamic uncertainties and unknown hysteresis is proposed. The hysteresis is described by a saturated-type Prandtl-Ishlinskii (PI) model, which is more applicable than the traditional PI model. The main advantages of the authors scheme are that by introducing an initialising technique, the L performance of the tracking error can be achieved, the assumption on dynamic uncertainties is relaxed, the explosion of the complexity problem when the hysteresis is fused with back-stepping design can be eliminated, which together with the estimation of vector norm of unknown parameters makes the control law be simplified and the computational burden be greatly reduced. Simulation results are presented to demonstrate the efficiency of the proposed scheme.

Published in:

Control Theory & Applications, IET  (Volume:5 ,  Issue: 16 )