By Topic

Integrating user preference to similarity queries over medical images datasets

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Ferreira, M.R.P. ; Comput. Sci. Dept., Univ. of Sao Paulo, São Carlos, Brazil ; Ponciano-Silva, M. ; Traina, A.J.M. ; Traina, A.J.M.
more authors

Large amounts of images from medical exams are being stored in databases, so developing retrieval techniques is an important research problem. Retrieval based on the image visual content is usually better than using textual descriptions, as they seldom gives every nuances that the user may be interested in. Content-based image retrieval employs the similarity among images for retrieval. However, similarity is evaluated using numeric methods, and they often orders the images by similarity in a way rather distinct from the user's intention. In this paper, we propose a technique to allow expressing the user's preference over attributes associated to the images, so similarity queries can be refined by preference rules. Experiments performed over a dataset with computed tomography lung images shows that correctly expressing the user's preferences, the similarity query precision can increase from an average of 60% up to close to 100%, when enough interesting images exists in the database.

Published in:

Computer-Based Medical Systems (CBMS), 2010 IEEE 23rd International Symposium on

Date of Conference:

12-15 Oct. 2010