Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Design of a probabilistic ontology-based clinical decision support system for classifying temporal patterns in the ICU: A sepsis case study

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Ongenae, F. ; Dept. of Inf. Technol., Ghent Univ., Ghent, Belgium ; Dhaene, T. ; De Turck, F. ; Benoit, D.
more authors

Medical time series contain important information about the condition of a patient. However, due to the large amount of data and the staff shortage, it is difficult for physicians to monitor these time series for trends that suggest a relevant clinical detoriation due to a complication or new pathology. This paper proposes a framework that supports physicians in detecting patterns in time series. It has three main tasks. First, the time-dependent data is gathered from heterogeneous sources and the semantics are made explicit by using an ontology. Second, Machine Learning techniques detect trends in the semantic time series data that indicate that a patient has a particular pathology. However, computerized classification techniques are not 100% accurate. Therefore, the third task consists of adding the pathology classification to the ontology with an associated probability and notifying the physician if necessary. The framework was evaluated with an ICU use case, namely detecting sepsis. Sepsis is the number one cause of death in the ICU.

Published in:

Computer-Based Medical Systems (CBMS), 2010 IEEE 23rd International Symposium on

Date of Conference:

12-15 Oct. 2010