Cart (Loading....) | Create Account
Close category search window
 

Proportional hazard model with ℓ1 Penalization applied to Predictive Maintenance in semiconductor manufacturing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Pampuri, S. ; Univ. of Pavia, Pavia, Italy ; Schirru, A. ; De Luca, C. ; De Nicolao, G.

The present paper is motivated by the application of Predictive Maintenance (PM) techniques in the semiconductor manufacturing environment: such techniques are able, using process data, to make reliable predictions of residual equipment lifetime. The employment of PM yields positive fallouts on the productive process in form of unscheduled downtime reduction, increased spare parts availability and improved overall production quality. One of the main challenges in PM modeling regards the data-driven assessment of relevant process variables when insufficient expert knowledge is available. In this paper, survival models theory is employed jointly with ℓ1 penalization techniques: this allows to obtain sparse models able to select the meaningful process variables and simultaneously predict the remaining lifetime of an equipment. Additionally, frailty modeling techniques are employed to concurrently handle several productive equipments of the same type, exploiting their similarities to increase prediction accuracy. The proposed methodology is validated, illustrating promising results, by means of a semiconductor manufacturing dataset.

Published in:

Automation Science and Engineering (CASE), 2011 IEEE Conference on

Date of Conference:

24-27 Aug. 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.