By Topic

Directly Measuring Material Proportions Using Hyperspectral Compressive Sensing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Zare, A. ; Dept. of Electr. & Comput. Eng., Univ. of Missouri, Columbia, MO, USA ; Gader, P. ; Gurumoorthy, K.S.

A compressive sensing framework is described for hyperspectral imaging. It is based on the widely used linear mixing model, LMM, which represents hyperspectral pixels as convex combinations of small numbers of endmember (material) spectra. The coefficients of the endmembers for each pixel are called proportions. The endmembers and proportions are often the sought-after quantities; the full image is an intermediate representation used to calculate them. Here, a method for estimating proportions and endmembers directly from compressively sensed hyperspectral data based on LMM is shown. Consequently, proportions and endmembers can be calculated directly from compressively sensed data with no need to reconstruct full hyperspectral images. If spectral information is required, endmembers can be reconstructed using compressive sensing reconstruction algorithms. Furthermore, given known endmembers, the proportions of the associated materials can be measured directly using a compressive sensing imaging device. This device would produce a multiband image; the bands would directly represent the material proportions.

Published in:

Geoscience and Remote Sensing Letters, IEEE  (Volume:9 ,  Issue: 3 )