By Topic

Boolean Functions Over Nano-Fabrics: Improving Resilience Through Coding

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Sang Hyun Lee ; Dept. of Electr. & Comput. Eng., Univ. of Texas, Austin, TX, USA ; Vishwanath, S.

This paper determines mechanisms to mitigate errors when implementing Boolean functions in nano-circuits. Nano-fabrics are expected to have high defect rates as atomic variations directly impact such materials. This paper develops a coding mechanism that uses a combination of cheap, but unreliable nano-device as the main function and reliable, but expensive CMOS devices to implement the coding mechanism. The unique feature of this paper is that it exploits the don't-cares that naturally occur in Boolean functions to construct better codes. The reliable Boolean function problem is cast as a constraint satisfaction problem and then solved using a tree-based dynamic programming algorithm. (Here, the word “dynamic programming” is used in the same sense as computer-science literature, i.e., and as an efficient search algorithm over trees).

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:20 ,  Issue: 11 )