By Topic

Dynamic Power Management for the Iterative Decoding of Turbo Codes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Amador, E. ; EURECOM, Sophia Antipolis, France ; Knopp, R. ; Pacalet, R. ; Rezard, V.

Turbo codes are presently ubiquitous in the context of mobile wireless communications among other application domains. A decoder for such codes is typically the most power intensive component in the baseband processing chain of a wireless receiver. The iterative nature of these decoders represents a dynamic workload. This brief presents a dynamic power management policy for these decoders. An algorithm is proposed to tune a power manageable decoder according to a prediction of the workload involved within the decoding task. By reclaiming the timing slack left when operating the decoder at a high power mode, the proposed algorithm continuously looks for opportunities to switch to a lower power mode that guarantees the task completion. We apply this technique to an long term evolution Turbo decoder and explore the feasibility of a VLSI implementation on a CMOS technology of 65 nm. Energy savings of up to 54% were achieved with a relatively low loss in error-correction performance.

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:20 ,  Issue: 11 )