By Topic

Game-based Abstraction and Controller Synthesis for Probabilistic Hybrid Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Ernst Moritz Hahn ; Saarland Univ., Saarbrucken, Germany ; Gethin Norman ; David Parker ; Bjorn Wachter
more authors

We consider a class of hybrid systems that involve random phenomena, in addition to discrete and continuous behaviour. Examples of such systems include wireless sensing and control applications. We propose and compare two abstraction techniques for this class of models, which yield lower and upper bounds on the optimal probability of reaching a particular class of states. We also demonstrate the applicability of these abstraction techniques to the computation of long-run average reward properties and the synthesis of controllers. The first of the two abstractions yields more precise information, while the second is easier to construct. For the latter, we demonstrate how existing solvers for hybrid systems can be leveraged to perform the computation.

Published in:

Quantitative Evaluation of Systems (QEST), 2011 Eighth International Conference on

Date of Conference:

5-8 Sept. 2011