By Topic

Model-based Fault Detection and Isolation Using Neural Networks: An Industrial Gas Turbine Case Study

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Hasan Abbasi Nozari ; Dept. of Mechatron., Islamic Azad Univ., Tehran, Iran ; Hamed Dehghan Banadaki ; Mehdi Aliyari Shoorehdeli ; Silvio Simani

This study proposed a model based fault detection and isolation (FDI) method using multi-layer perceptron (MLP) neural network. Detection and isolation of realistic faults of an industrial gas turbine engine in steady-state conditions is mainly centered. A bank of MLP models which are obtained by nonlinear dynamic system identification is used to generate the residuals, and also simple thresholding is used for the intend of fault detection while another MLP neural network is employed to isolate the faults. The proposed FDI method was tested on a single-shaft industrial gas turbine prototype and it have been evaluated using non-linear simulations based on the real gas turbine data. A brief comparative study with other related works in the literature on this gas turbine benchmark is also provided to show the benefits of proposed FDI method.

Published in:

Systems Engineering (ICSEng), 2011 21st International Conference on

Date of Conference:

16-18 Aug. 2011