Cart (Loading....) | Create Account
Close category search window
 

Combustion studies of refused-derived fuel (RDF) in fluidized bed (FB) system a method

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Abdul, A. ; Dept. of Chem. Eng., Univ. Teknol. Malaysia, Skudai, Malaysia ; Rozainee, R. ; Anwar, J.M. ; Wan Alwi, R.S.

Among most conventional incineration systems, the fluidized bed combustor (FBC) had been described as one of the most advantageous by providing simple operation with ability to accommodate low quality fuel as biomass, sludge and MSW with high moisture; reduced auxiliary fuel use; reduced operating and maintenance costs. This could only be achieved if optimal operating parameters are determined. This paper presents the methods and part of the findings of an on-going research aimed at optimizing the operating parameters that gives lowest emissions in the combustion of a fluff refused-derived fuel (f-RDF) in pilot scale fluidized bed combustor. The method adopt includes - cold fluidization studies in rectangular model column to determine the fluidizing velocity of the inert bed material (silica sand), and the effects of increasing fluidizing numbers on the mixing behavior of bed and fuel. This is closely followed by combustion study in the pilot scale FBC.

Published in:

Clean Energy and Technology (CET), 2011 IEEE First Conference on

Date of Conference:

27-29 June 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.