By Topic

Photocurrent mapping as a probe of transport properties and electric field distributions in cadmium zinc telluride detectors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
J. E. Toney ; Dept. of Electr. & Comput. Eng., Carnegie Mellon Univ., Pittsburgh, PA, USA ; B. A. Brunett ; T. E. Schlesinger ; R. B. James

We have performed two-dimensional cross-sectional photocurrent mapping of Cd0.9Zn0.1Te detectors grown by the high-pressure Bridgman method as a means of probing the electric field distribution. We have analyzed the results using a model based on the drift-diffusion equation. In the case of a uniform electric field and excitation far from the electrodes, the result is virtually identical in form to the Hecht relation. We adapt the Hecht relation to analyze photocurrent data and generalize it to the case of a nonuniform electric field. The spatial distribution of photocurrent for the material that we have examined suggests a nonuniformity in either the electric field or the electron mobility-lifetime product. These observations may help to explain the slope changes observed in detector response pulses

Published in:

IEEE Transactions on Nuclear Science  (Volume:44 ,  Issue: 4 )