Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Stochastic searching on the line and its applications to parameter learning in nonlinear optimization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Oommen, B.J. ; Sch. of Comput. Sci., Carleton Univ., Ottawa, Ont.

We consider the problem of a learning mechanism (for example, a robot) locating a point on a line when it is interacting with a random environment which essentially informs it, possibly erroneously, which way it should move. In this paper we present a novel scheme by which the point can he learned using some recently devised learning principles. The heart of the strategy involves discretizing the space and performing a controlled random walk on this space. The scheme is shown to be ε-optimal and to converge with probability 1. Although the problem is solved in its generality, its application in nonlinear optimization has also been suggested. Typically, an optimization process involves working one's way toward the maximum (minimum) using the local information that is available. However, the crucial issue in these strategies is that of determining the parameter to be used in the optimization itself. If the parameter is too small the convergence is sluggish. On the other hand, if the parameter is too large, the system could erroneously converge or even oscillate. Our strategy can be used to determine the best parameter to be used in the optimization

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:27 ,  Issue: 4 )