By Topic

Bayesian Methods for Accelerated Destructive Degradation Test Planning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ying Shi ; San Francisco Veterans Affairs Med. Center/Northern California Inst. for Res. & Educ., San Francisco, CA, USA ; Meeker, W.Q.

Accelerated Destructive Degradation Tests (ADDTs) provide timely product reliability information in practical applications. This paper describes Bayesian methods for ADDT planning under a class of nonlinear degradation models with one accelerating variable. We use a Bayesian criterion based on the estimation precision of a specified failure-time distribution quantile at use conditions to find optimum test plans. A large-sample approximation for the posterior distribution provides a useful simplification to the planning criterion. The general equivalence theorem (GET) is used to verify the global optimality of the numerically optimized test plans. Optimum plans usually provide insight for constructing compromise plans which tend to be more robust, and practically useful. We present a numerical example with a log-location-scale distribution to illustrate the Bayesian test planning methods, and to investigate the effects of the prior distribution and sample size on test planning results.

Published in:

Reliability, IEEE Transactions on  (Volume:61 ,  Issue: 1 )