By Topic

Microdischarge Process and Vacuum Ultraviolet Emission Properties of Dielectric-Barrier-Discharge-Type Flat Fluorescent Lamps

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Wen-Bo Hu ; Key Lab. for Phys. Electron. & Devices of the Minist. of Educ., Xi''an Jiaotong Univ., Xi''an, China ; Mei Yang ; Zhen Liu

The microdischarge process and the vacuum ultraviolet (VUV) emission properties of dielectric-barrier-discharge-type flat fluorescent lamps (FFLs) are investigated by shooting the spatiotemporally resolved images of a microdischarge in an FFL filled with Ne-Xe (10%) gas mixture of 85 kPa with a high-speed intensified charge-coupled device camera and by measuring the VUV emission spectra at various gas pressures and driving parameters with a vacuum monochromator and a photomultiplier tube. It was found that a microdischarge was generated at a protrusion on the cathode at first, diffused to the anode side afterward, and exhibited a uniform glow discharge pattern. The measured results of the VUV spectra show that, as the total gas pressure increases, the 147-nm resonance emission gradually decreases, while the continuum emission centered at 173 nm rapidly increases, which cause both of the intensity and the efficiency of the VUV emission to increase. As the driving voltage amplitude increases, there exists a maximum VUV emission efficiency value. At a total gas pressure of 70 kPa, as the driving pulse frequency increases from 50 to 130 kHz, the spectral intensities of the VUV emission initially increase and then gradually tend to saturate at 90 kHz.

Published in:

Plasma Science, IEEE Transactions on  (Volume:39 ,  Issue: 11 )