By Topic

Kernel Entropy Component Analysis for Remote Sensing Image Clustering

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
3 Author(s)
Gomez-Chova, L. ; Image Process. Lab., Univ. de Valencia, Paterna, Spain ; Jenssen, R. ; Camps-Valls, G.

This letter proposes the kernel entropy component analysis for clustering remote sensing data. The method generates nonlinear features that reveal structure related to the Rényi entropy of the input space data set. Unlike other kernel feature-extraction methods, the top eigenvalues and eigenvectors of the kernel matrix are not necessarily chosen. Data are interestingly mapped with a distinct angular structure, which is exploited to derive a new angle-based spectral clustering algorithm based on the mapped data. An out-of-sample extension of the method is also presented to deal with test data. We focus on cloud screening from Medium Resolution Imaging Spectrometer images. Several images are considered to account for the high variability of the problem. Good results obtained show the suitability of the proposal.

Published in:

Geoscience and Remote Sensing Letters, IEEE  (Volume:9 ,  Issue: 2 )