By Topic

Fully Gravure Printed Half Adder on Plastic Foils

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Jinsoo Noh ; Printed Electronics Research Institute, Paru Co., Sunchon, Korea ; Sungho Kim ; Kyunghwan Jung ; Joonseok Kim
more authors

All-printed half adders will be the first step to the way of printing an arithmetic logic unit which will be further expanded to printing microprocessors directly onto flexible plastic foils. In this letter, the half-adder circuit has been constructed using an all gravure printing process on poly(ethylene terephtalate) foils. To successfully operate the printed half adder, we first simulate the half adder using the parameters extracted from gravure-printed single-walled carbon nanotube (SWNT)-based thin-film transistors (TFTs) to provide a tolerable range of fluctuations of electrical parameters of the gravure-printed SWNT-based TFTs. Based on the close comparison between simulation results and attained electrical parameters of printed TFTs, controlling waviness of printed drain-source electrodes has been found to be a key factor for successfully executing the function of a printed half adder on the plastic foils.

Published in:

IEEE Electron Device Letters  (Volume:32 ,  Issue: 11 )