By Topic

An Optical In-Plane MEMS Vibration Sensor

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)
Wilfried Hortschitz ; Institute for Integrated Sensor Systems, Austrian Academy of Sciences, Wiener Neustadt, Austria ; Harald Steiner ; Matthias Sachse ; Michael Stifter
more authors

This paper presents encouraging results of a novel optoelectronic conversion method for relative displacement. An optical modulator responding to acceleration and gravitation is used for characterization. The Si microelectromechanical system (MEMS) component comprise a spring suspended, in-plane oscillating mass carrying an array of optical apertures. Light flux modulation is achieved with a second array of complementary apertures that is fixed to the Si frame. The investigated device comprises a sandwich structure of an SMD LED, the MEMS aperture gratings, and a phototransistor. Relative displacements of the gratings generate a modulation of the LED light flux that is detected by the phototransistor. Depending on the aperture design, the relative displacement may extend over several tens of microns maintaining a sub-nm resolution. Thus, no closed-loop position control system is required, resulting in minimum complexity and energy consumption of the MEMS component. This setup simplifies the manufacturing process as much as possible, which is one of the significant advantages of the sensor principle. Furthermore, the presented prototype exhibits a promising high sensitivity of 60 nA/nm for displacement, featuring a noise level of about 8 pm/√Hz.

Published in:

IEEE Sensors Journal  (Volume:11 ,  Issue: 11 )