By Topic

Enhancing Community Discovery and Characterization in VCoP Using Topic Models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Cuadra, L. ; Dept. of Ind. Eng., Univ. of Chile, Santiago, Chile ; Rios, S.A. ; L'Huillier, G.

The identification of communities in social networks is a common problem that researchers have been dealing using network analysis properties. However, in environments where community members are connected by digital documents, most researchers have either emphasize to solve the community discovery problem computing structural properties of networks, ignoring the underlying semantic information from digital documents. In this paper, we propose a novel approach to combine traditional network analysis methods for community detection with text mining techniques. This way, extracted communities can be labeled according to latent semantic information within documents, called topics. Our proposal was evaluated in Plexilandia, a virtual community of practice with more than 2,500 members and 9 years of commentaries.

Published in:

Web Intelligence and Intelligent Agent Technology (WI-IAT), 2011 IEEE/WIC/ACM International Conference on  (Volume:3 )

Date of Conference:

22-27 Aug. 2011