By Topic

Simulate to Detect: A Multi-agent System for Community Detection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Cazabet, R. ; IRIT, Toulouse Univ., Toulouse, France ; Amblard, F.

Community detection in social networks is a well-known problem encountered in many fields. Many traditional algorithms have been proposed to solve it, with recurrent problems: impossibility to deal with dynamic networks, sensitivity to noise, no detection of overlapping communities, exponential running time. This paper proposes a multi-agent system that replays the evolution of a network and, in the same time, reproduces the rise and fall of communities. After presenting the strengths and weaknesses of existing community detection algorithms, we describe the multi-agent system we propose. Then, we compare our solution with existing works, and show some advantages of our method, in particular the possibility to dynamically detect the communities.

Published in:

Web Intelligence and Intelligent Agent Technology (WI-IAT), 2011 IEEE/WIC/ACM International Conference on  (Volume:2 )

Date of Conference:

22-27 Aug. 2011