By Topic

Contingency visualization for real-time decision support in grid operation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Zhenyu Huang ; Battelle-Pacific Northwest Nat. Lab., Richland, WA, USA ; Yousu Chen ; Greitzer, F.L. ; Eubank, R.

Contingency analysis is a key function in control centers to assess the impact of various combinations of power system component failures based on state estimates. Today's practice analyzes only a limited set of contingency cases and lacks of capabilities in presenting the results in a way that is easy to be understood by grid operators in a short time frame of seconds to minutes. This limits the ability to operate the power grid for better reliability and efficiency. Faster analysis of more cases is required to safely and reliably operate today's power grids which have a less margin and more intermittent renewable energy sources. This paper explores the advancements in high performance computing and visual analytics for improving the computational speed and the information representation in contingency analysis. A framework of advanced contingency analysis is proposed. Case studies using the Western Electricity Coordinating Council (WECC) system are presented to demonstrate the feasibility of the proposed framework. Comparative assessment by real power grid operators has been performed as part of a WECC operator training class. The assessment results demonstrate the validity of the proposed contingency analysis and visualization approach.

Published in:

Power and Energy Society General Meeting, 2011 IEEE

Date of Conference:

24-29 July 2011