By Topic

VPP's multi-level negotiation in smart grids and competitive electricity markets

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Vale, Z. ; GECAD-Knowledge Eng. & Decision-Support Res. Center, Polytech. of Porto (ISEP/IPP), Porto, Portugal ; Pinto, T. ; Morais, H. ; Praca, I.
more authors

The increase of distributed generation (DG) has brought about new challenges in electrical networks electricity markets and in DG units operation and management. Several approaches are being developed to manage the emerging potential of DG, such as Virtual Power Players (VPPs), which aggregate DG plants; and Smart Grids, an approach that views generation and associated loads as a subsystem. This paper presents a multi-level negotiation mechanism for Smart Grids optimal operation and negotiation in the electricity markets, considering the advantages of VPPs' management. The proposed methodology is implemented and tested in MASCEM - a multiagent electricity market simulator, developed to allow deep studies of the interactions between the players that take part in the electricity market negotiations.

Published in:

Power and Energy Society General Meeting, 2011 IEEE

Date of Conference:

24-29 July 2011