By Topic

Optimal charging of plug-in hybrid electric vehicles in smart grids

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Somayeh Sojoudi ; Department of Control and Dynamical Systems, California Institute of Technology ; Steven H. Low

Plug-in hybrid electric vehicles (PHEVs) play an important role in making a greener future. Given a group of PHEVs distributed across a power network equipped with the smart grid technology (e.g. wireless communication devices), the objective of this paper is to study how to schedule the charging of the PHEV batteries. To this end, we assume that each battery must be fully charged by a pre-specified time, and that the charging rate can be time-varying at discrete-time instants. The scheduling problem for the PHEV charging can be augmented into the optimal power flow (OPF) problem to obtain a joint OPF-charging (dynamic) optimization. A solution to this highly nonconvex problem optimizes the network performance by minimizing the generation and charging costs while satisfying the network, physical and inelastic-load constraints. A global optimum to the joint OPF-charging optimization can be found efficiently in polynomial time by solving its convex dual problem whenever the duality gap is zero for the joint OPF-charging problem. It is shown in a recent work that the duality gap is expected to be zero for the classical OPF problem. We build on this result and prove that the duality gap is zero for the joint OPF-charging optimization if it is zero for the classical OPF problem. The results of this work are applied to the IEEE 14 bus system.

Published in:

2011 IEEE Power and Energy Society General Meeting

Date of Conference:

24-29 July 2011