By Topic

Optimal demand response based on utility maximization in power networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Na Li ; Eng. & Appl. Sci. Div., California Inst. of Technol., Pasadena, CA, USA ; Lijun Chen ; Low, S.H.

Demand side management will be a key component of future smart grid that can help reduce peak load and adapt elastic demand to fluctuating generations. In this paper, we consider households that operate different appliances including PHEVs and batteries and propose a demand response approach based on utility maximization. Each appliance provides a certain benefit depending on the pattern or volume of power it consumes. Each household wishes to optimally schedule its power consumption so as to maximize its individual net benefit subject to various consumption and power flow constraints. We show that there exist time-varying prices that can align individual optimality with social optimality, i.e., under such prices, when the households selfishly optimize their own benefits, they automatically also maximize the social welfare. The utility company can thus use dynamic pricing to coordinate demand responses to the benefit of the overall system. We propose a distributed algorithm for the utility company and the customers to jointly compute this optimal prices and demand schedules. Finally, we present simulation results that illustrate several interesting properties of the proposed scheme.

Published in:

Power and Energy Society General Meeting, 2011 IEEE

Date of Conference:

24-29 July 2011