By Topic

The gas electron multiplier (GEM)

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)

We describe operating principles and results obtained with a new detector element: the Gas Electron Multiplier (GEM). Consisting of a thin composite sheet with two metal layers separated by a thin insulator, and pierced by a regular matrix of open channels, the GEM electrode, inserted on the path of electrons in a gas detector, allows the transfer of charge with an amplification factor approaching ten. Uniform response and high rate capability are demonstrated. Coupled to another device, multiwire or micro-strip chamber, the GEM electrode permits higher gains or less critical operation; separation of the sensitive (conversion) volume and the detection volume have other advantages: a built-in delay (useful for triggering purposes), and the possibility of applying high fields on the photo-cathode of ring imaging detectors to improve efficiency. Multiple GEM grids in the same gas volume allow large amplification factors to be achieved in a succession of steps, leading to the realization of an effective gas-filled photomultiplier

Published in:

Nuclear Science, IEEE Transactions on  (Volume:44 ,  Issue: 3 )