Cart (Loading....) | Create Account
Close category search window
 

Recurrent neural network-based control strategy for battery energy storage in generation systems with intermittent renewable energy sources

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Capizzi, G. ; Dept. of Electr., Electron. & Inf. Eng., Univ. of Catania, Catania, Italy ; Bonanno, F. ; Napoli, C.

The intermittent nature of renewable sources as wind and solar puts a challenge for their use in supply energy to small islands, isolated communities or in developing countries. The integration of battery energy storage system (BESS) or diesel groups is then mandatory. The aim of the paper is to propose a complete recurrent neural networks (RNN) based control strategy of the BESS accounting state of charge (SOC) and terminal voltage and that can be used for their size and to test the use of different type of BESS.

Published in:

Clean Electrical Power (ICCEP), 2011 International Conference on

Date of Conference:

14-16 June 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.