By Topic

Voltage Driven Nondestructive Self-Reference Sensing Scheme of Spin-Transfer Torque Memory

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Zhenyu Sun ; Dept. of Electr. & Comput. Eng., Polytech. Inst. of New York Univ., Brooklyn, NY, USA ; Hai Li ; Yiran Chen ; Xiaobin Wang

Spin-transfer torque random access memory (STT-RAM) has demonstrated great potentials as a universal memory for its fast access speed, zero standby power, excellent scalability, and simplicity of cell structure. However, large process variations of both magnetic tunneling junction (MTJ) and CMOS process severely limit the yield of STT-RAM chips and prevent the massive production from happening. In this paper, we analyze and compare the impacts of process variations on various sensing schemes of STT-RAM design. On top of it, we propose a novel voltage-driven nondestructive self-reference sensing scheme to enhance the STT-RAM chip yield by significantly improving sense margin. Monte Carlo simulations of a 16-Kb STT-RAM array shows that our proposed scheme can achieve the same yield as the previous nondestructive self-reference sensing scheme while improving the sense margin by five times with the similar access performance and power.

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:20 ,  Issue: 11 )