Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Regularized Modified BPDN for Noisy Sparse Reconstruction With Partial Erroneous Support and Signal Value Knowledge

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Wei Lu ; Dept. of Electr. & Comput. Eng., Iowa State Univ., Ames, IA, USA ; Vaswani, N.

We study the problem of sparse reconstruction from noisy undersampled measurements when the following knowledge is available. (1) We are given partial, and partly erroneous, knowledge of the signal's support, denoted by T . (2) We are also given an erroneous estimate of the signal values on T, denoted by (μ̂)T . In practice, both of these may be available from prior knowledge. Alternatively, in recursive reconstruction applications, like real-time dynamic MRI, one can use the support estimate and the signal value estimate from the previous time instant as T and (μ̂)T. In this paper, we introduce regularized modified basis pursuit denoising (BPDN) (reg-mod-BPDN) to solve this problem and obtain computable bounds on its reconstruction error. Reg-mod-BPDN tries to find the signal that is sparsest outside the set T, while being “close enough” to (μ̂)T on T and while satisfying the data constraint. Corresponding results for modified-BPDN and BPDN follow as direct corollaries. A second key contribution is an approach to obtain computable error bounds that hold without any sufficient conditions. This makes it easy to compare the bounds for the various approaches. Empirical reconstruction error comparisons with many existing approaches are also provided.

Published in:

Signal Processing, IEEE Transactions on  (Volume:60 ,  Issue: 1 )