By Topic

Exponential Synchronization of Complex Networks With Finite Distributed Delays Coupling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Cheng Hu ; Coll. of Math. & Syst. Sci., Xinjiang Univ., Urumqi, China ; Juan Yu ; Haijun Jiang ; Zhidong Teng

In this paper, the exponential synchronization for a class of complex networks with finite distributed delays coupling is studied via periodically intermittent control. Some novel and useful criteria are derived by utilizing a different technique compared with some correspondingly previous results. As a special case, some sufficient conditions ensuring the exponential synchronization for a class of coupled neural networks with distributed delays are obtained. Furthermore, a feasible region of the control parameters is derived for the realization of exponential synchronization. It is worth noting that the synchronized state in this paper is not an isolated node but a non-decoupled state, in which the inner coupling matrix and the degree of the nodes play a central role. Additionally, the traditional assumptions on control width, non-control width, and discrete delays are removed in our results. Finally, some numerical simulations are given to demonstrate the effectiveness of the proposed control method.

Published in:

Neural Networks, IEEE Transactions on  (Volume:22 ,  Issue: 12 )