Cart (Loading....) | Create Account
Close category search window
 

Maintaining Healthy Population Diversity Using Adaptive Crossover, Mutation, and Selection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
McGinley, B. ; Bio-Inspired & Reconfigurable Comput. Res. Group, Nat. Univ. of Ireland (NUI), Galway, Ireland ; Maher, J. ; O'Riordan, C. ; Morgan, F.

This paper presents ACROMUSE, a novel genetic algorithm (GA) which adapts crossover, mutation, and selection parameters. ACROMUSEs objective is to create and maintain a diverse population of highly-fit (healthy) individuals, capable of adapting quickly to fitness landscape change and well-suited to the efficient optimization of multimodal fitness landscapes. A new methodology is introduced for determining standard population diversity (SPD) and an original measure of healthy population diversity (HPD) is proposed. The SPD measure is employed to adapt crossover and mutation, while selection pressure is controlled by adapting tournament size according to HPD. In addition to selection pressure control, ACROMUSE tournament selection selects individuals according to healthy diversity contribution rather than fitness. This proposed selection mechanism simultaneously promotes diversity and fitness within the population. The performance of ACROMUSE is evaluated using various multimodal benchmark functions. Statistically significant results are presented comparing ACROMUSEs fitness and diversity performance to that of several other GAs. By maintaining a diverse population of healthy individuals, ACROMUSE responds to fitness landscape change by restoring better fitness scores faster than other GAs. Analysis of the adaptive operators illustrates that the key benefit of ACROMUSE is the synergy of the operators working together to achieve an effective balance between exploration and exploitation.

Published in:

Evolutionary Computation, IEEE Transactions on  (Volume:15 ,  Issue: 5 )

Date of Publication:

Oct. 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.