By Topic

Comparing Policy Gradient and Value Function Based Reinforcement Learning Methods in Simulated Electrical Power Trade

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Lincoln, R. ; Dept. of Electron. & Electr. Eng., Univ. of Strathclyde, Glasgow, UK ; Galloway, S. ; Stephen, B. ; Burt, G.

In electrical power engineering, reinforcement learning algorithms can be used to model the strategies of electricity market participants. However, traditional value function based reinforcement learning algorithms suffer from convergence issues when used with value function approximators. Function approximation is required in this domain to capture the characteristics of the complex and continuous multivariate problem space. The contribution of this paper is the comparison of policy gradient reinforcement learning methods, using artificial neural networks for policy function approximation, with traditional value function based methods in simulations of electricity trade. The methods are compared using an AC optimal power flow based power exchange auction market model and a reference electric power system model.

Published in:

Power Systems, IEEE Transactions on  (Volume:27 ,  Issue: 1 )