Cart (Loading....) | Create Account
Close category search window
 

Study of Memory Performance and Electrical Characteristics for Metal Nanocrystal Memories

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Pei-Hong Cheng ; Dept. of Phys., Zhejiang Normal Univ., Jinhua, China ; Shi-Hua Huang ; Feng-Min Wu

Using a transient electrical model, in which the impacts of Si surface potential and thermal excitation were taken into account, the charging and discharging processes in a metal nanocrystal (NC) memory were simulated. For an NC memory with 2.25 nm tunnel oxide layer, the retention time is more than ten years, and the program and erase time can reach 45 and 60 μs at ±10 V applied voltage, respectively. Moreover, the carrier storage effect caused by NCs has great influence on capacitance-voltage (C-V) characteristics. The flat-band voltage shift ΔVFB and the charge density Qnc are greatly dependent on the start sweep gate voltage VG and the sweep rate dV/dt. The large memory window reveals the high carrier injection efficiency for both electrons and holes, and it increases steadily from 0.86 to 8.30 V with the increase of the start applied gate voltage from ±2 to ± 6 V. When the sweep rate is slow enough, the flat-band voltage shift and the stored charges will reach a saturation state. Hence, the simulation C-V characteristics of metal NC memory may guide the devices design or to predict their performances.

Published in:

Nanotechnology, IEEE Transactions on  (Volume:11 ,  Issue: 1 )

Date of Publication:

Jan. 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.