By Topic

A Robust Frequency Tracking Loop for Energy-Efficient Crystalless WBAN Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Wei-Hao Sung ; Dept. of Electron. Eng., Nat. Chiao Tung Univ., Hsinchu, Taiwan ; Jui-Yuan Yu ; Chen-Yi Lee

This brief presents a frequency tracking loop (FTL) to realize a crystalless wireless sensor node (WSN) for wireless body area network (WBAN). By tracking a remote wireless RF reference for system clock calibration, the proposed FTL allows WSNs to tolerate a large-frequency error from on-chip CMOS oscillators. Moreover, to achieve energy-efficient transmissions in crystalless, a sufficiently accurate convergence clock is required to enable burst overmegabits-per-second system throughput with minimized operation duty cycle. For the dedicated purpose, a comparison-based binary-search tracking scheme, which ensures accurate and robust convergence against noisy wireless channel, is further developed to manage the operation of FTL. The intermediate frequency back-end part of FTL is implemented in 90-nm CMOS process. Measurement results show that the FTL extends an initial tolerance of system clock error to ±3% and achieves a final quartz-crystal comparable ±50-ppm accuracy. This enables 4.85-Mb/s wireless links and improves 79% energy efficiency by RF operation-time reduction, giving a power-saved and miniaturized WSN device for WBAN applications.

Published in:

Circuits and Systems II: Express Briefs, IEEE Transactions on  (Volume:58 ,  Issue: 10 )