By Topic

High-Resolution Capacitive Microinclinometer With Oblique Comb Electrodes Using (110) Silicon

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Dae-Hun Jeong ; Sch. of Inf. & Mechatron., Gwangju Inst. of Sci. & Technol., Gwangju, South Korea ; Sung-Sik Yun ; Byung-Geun Lee ; Myung-Lae Lee
more authors

We propose a new capacitive microinclinometer where oblique comb electrodes and double-folded suspension springs are aligned parallel to the vertical (111) plane of (110) silicon. The oblique comb utilizes both the overlapped area and the gap between movable and stationary electrodes, resulting in a considerable increase in sensitivity (capacitance change/angle). The resolution becomes even higher by taking advantage of the smooth (111) sidewalls of the oblique comb electrodes, which are fabricated using silicon deep reactive ion etching followed by crystalline wet etching. The surface roughness was reduced from 200 (Rrms) to 20 nm (Rrms), and the verticality was improved from 88.7° to 89.7°. The capacitance change of the fabricated inclinometer experimentally ranges from -0.793 to 0.783 pF for the full range of inclination angle (from -90° to 90°). The estimated worst resolution, which is obtainable at an inclination angle of ±85°, was as low as 0.25°.

Published in:

Microelectromechanical Systems, Journal of  (Volume:20 ,  Issue: 6 )