By Topic

Invertible Extractors and Wiretap Protocols

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Mahdi Cheraghchi ; Computer Science Department, Carnegie Mellon University, Pittsburgh ; Fredric Didier ; Amin Shokrollahi

A wiretap protocol is a pair of randomized encoding and decoding functions such that knowledge of a bounded fraction of the encoding of a message reveals essentially no information about the message, while knowledge of the entire encoding reveals the message using the decoder. In this paper, the notion of efficiently invertible extractors is studied and it is shown that a wiretap protocol can be constructed from such an extractor. Then, invertible extractors for symbol-fixing, affine, and general sources are constructed and used to create wiretap protocols with asymptotically optimal trade-offs between their rate (ratio of the length of the message versus its encoding) and resilience (ratio of the observed positions of the encoding and the length of the encoding). The results are further applied to create wiretap protocols for challenging communication problems, such as active intruders who change portions of the encoding, network coding, and intruders observing arbitrary Boolean functions of the encoding.

Published in:

IEEE Transactions on Information Theory  (Volume:58 ,  Issue: 2 )