By Topic

Image Prediction Based on Neighbor-Embedding Methods

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Mehmet TurkanNational Institute for Research in Computer Science and Control, INRIA/IRISA, Rennes, France ; Christine Guillemot

This paper describes two new intraimage prediction methods based on two data dimensionality reduction methods: nonnegative matrix factorization (NMF) and locally linear embedding. These two methods aim at approximating a block to be predicted in the image as a linear combination of k-nearest neighbors determined on the known pixels in a causal neighborhood of the input block. Variable k can be seen as a parameter controlling some sort of sparsity constraints of the approximation vector. The impact of this parameter as well as of the nonnegativity and sum-to-one constraints for the addressed prediction problem has been analyzed. The prediction and RD performances of these two new image prediction methods have then been evaluated in a complete image coding-and-decoding algorithm. Simulation results show gains up to 2 dB in terms of the PSNR of the reconstructed signal after coding and decoding of the prediction residue when compared with H.264/AVC intraprediction modes, up to 3 dB when compared with template matching, and up to 1 dB when compared with a sparse prediction method.

Published in:

IEEE Transactions on Image Processing  (Volume:21 ,  Issue: 4 )