Cart (Loading....) | Create Account
Close category search window
 

Curved-Region-Based Ridge Frequency Estimation and Curved Gabor Filters for Fingerprint Image Enhancement

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Gottschlich, C. ; Inst. for Math. Stochastics, Univ. of Gottingen, Gottingen, Germany

Gabor filters (GFs) play an important role in many application areas for the enhancement of various types of images and the extraction of Gabor features. For the purpose of enhancing curved structures in noisy images, we introduce curved GFs that locally adapt their shape to the direction of flow. These curved GFs enable the choice of filter parameters that increase the smoothing power without creating artifacts in the enhanced image. In this paper, curved GFs are applied to the curved ridge and valley structures of low-quality fingerprint images. First, we combine two orientation-field estimation methods in order to obtain a more robust estimation for very noisy images. Next, curved regions are constructed by following the respective local orientation. Subsequently, these curved regions are used for estimating the local ridge frequency. Finally, curved GFs are defined based on curved regions, and they apply the previously estimated orientations and ridge frequencies for the enhancement of low-quality fingerprint images. Experimental results on the FVC2004 databases show improvements of this approach in comparison with state-of-the-art enhancement methods.

Published in:

Image Processing, IEEE Transactions on  (Volume:21 ,  Issue: 4 )
Biometrics Compendium, IEEE

Date of Publication:

April 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.