By Topic

Catenary Voltage Support: Adopting Modern Locomotives With Active Line-Side Converters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Bahrani, B. ; Ind. Electron. Lab., Swiss Fed. Inst. of Technol. (EPFL), Lausanne, Switzerland ; Rufer, A. ; Aeberhard, M.

This paper proposes a voltage support scheme for traction networks, which compensates for the voltage drop along the catenary line to which locomotives are connected. The proposed method is based on the injection of capacitive reactive power through the current controlled active line-side converter of locomotives. Comparing the catenary voltage with its reference value, the error is fed to a gain-scheduled PI-controller. The controller generates the q-axis reference value of the converter current, which is responsible for reactive power injection. The gain scheduling is carried out through identifying the parameters of the catenary line. The catenary parameters identification is performed by harmonic current injection and analyzing its impact on the catenary voltage. The performance of the proposed control strategy is evaluated in MATLAB/PLECS environment for a traction network consisting of one locomotive and two substations and moreover, for a two-locomotive three-substation traction network.

Published in:

Smart Grid, IEEE Transactions on  (Volume:3 ,  Issue: 1 )