By Topic

On Optimizing Overlay Topologies for Search in Unstructured Peer-to-Peer Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hung-Chang Hsiao ; Dept. of Comput. Sci. & Inf. Eng., Nat. Cheng-Kung Univ., Tainan, Taiwan ; Hong-Wei Su

Unstructured peer-to-peer (P2P) file-sharing networks are popular in the mass market. As the peers participating in unstructured networks interconnect randomly, they rely on flooding query messages to discover objects of interest and thus introduce remarkable network traffic. Empirical measurement studies indicate that the peers in P2P networks have similar preferences, and have recently proposed unstructured P2P networks that organize participating peers by exploiting their similarity. The resultant networks may not perform searches efficiently and effectively because existing overlay topology construction algorithms often create unstructured P2P networks without performance guarantees. Thus, we propose a novel overlay formation algorithm for unstructured P2P networks. Based on the file sharing pattern exhibiting the power-law property, our proposal is unique in that it poses rigorous performance guarantees. Theoretical performance results conclude that in a constant probability, 1) searching an object in our proposed network efficiently takes O(lnc N) hops (where c is a small constant), and 2) the search progressively and effectively exploits the similarity of peers. In addition, the success ratio of discovering an object approximates 100 percent. We validate our theoretical analysis and compare our proposal to competing algorithms in simulations. Based on the simulation results, our proposal clearly outperforms the competing algorithms in terms of 1) the hop count of routing a query message, 2) the successful ratio of resolving a query, 3) the number of messages required for resolving a query, and 4) the message overhead for maintaining and formatting the overlay.

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:23 ,  Issue: 5 )