Cart (Loading....) | Create Account
Close category search window
 

Subspace Snooping: Exploiting Temporal Sharing Stability for Snoop Reduction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Jeongseob Ahn ; Comput. Sci. Dept., Korea Adv. Inst. of Sci. & Technol. (KAIST), Daejeon, South Korea ; Daehoon Kim ; Jaehong Kim ; Jaehyuk Huh

Although snoop-based coherence protocols provide fast cache-to-cache transfers with a simple and robust coherence mechanism, scaling the protocols has been difficult due to the overheads of broadcast snooping. In this paper, we propose a coherence filtering technique called subspace snooping, which stores the potential sharers of each memory page in the page table entry. By using the sharer information in the page table entry, coherence transactions for a page generate snoop requests only to the subset of nodes in the system. However, the coherence subspace of a page may evolve, as the phases of applications may change or the operating system may migrate threads to different nodes. To adjust subspaces dynamically, subspace snooping supports two different shrinking mechanisms, which remove obsolete nodes from subspaces. Among the two shrinking mechanisms, subspace snooping with safe shrinking can be integrated to any type of coherence protocols and network topologies, as it guarantees that a subspace always contains the precise sharers of a page. Speculative shrinking breaks the subspace superset property, but achieves better snoop reductions than safe shrinking. We evaluate subspace snooping with Token Coherence on unordered mesh networks. Subspace snooping reduces 58 percent of snoops on average for a set of parallel scientific and server workloads, and 87 percent for our multiprogrammed workloads.

Published in:

Computers, IEEE Transactions on  (Volume:61 ,  Issue: 11 )

Date of Publication:

Nov. 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.