By Topic

Statistical MOSFET current variation due to variation in surface roughness scattering

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Alexander, C.L. ; Device Modelling Group, Univ. of Glasgow, Glasgow, UK ; Asenov, A.

An efficient and accurate method to include surface roughness scattering from a general, realistic synthesized surface in 3D Monte Carlo simulation is presented with verification. The method is then applied to study drain current variation due to variation in surface roughness scattering in an 18nm bulk Silicon nMOSFET, highlighting substantially increased variation at low drain bias compared with electrostatic drift diffusion simulation.

Published in:

Simulation of Semiconductor Processes and Devices (SISPAD), 2011 International Conference on

Date of Conference:

8-10 Sept. 2011