By Topic

Achieving the Secrecy Capacity of Wiretap Channels Using Polar Codes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Mahdavifar, H. ; Dept. of Electr. & Comput. Eng., Univ. of California San Diego, La Jolla, CA, USA ; Vardy, A.

Suppose that Alice wishes to send messages to Bob through a communication channel C1, but her transmissions also reach an eavesdropper Eve through another channel C2. This is the wiretap channel model introduced by Wyner in 1975. The goal is to design a coding scheme that makes it possible for Alice to communicate both reliably and securely. Reliability is measured in terms of Bob's probability of error in recovering the message, while security is measured in terms of the mutual information between the message and Eve's observations. Wyner showed that the situation is characterized by a single constant Cs, called the secrecy capacity, which has the following meaning: for all ε >; 0, there exist coding schemes of rate R ≥ Cs-ε that asymptotically achieve the reliability and security objectives. However, his proof of this result is based upon a random-coding argument. To date, despite consider able research effort, the only case where we know how to construct coding schemes that achieve secrecy capacity is when Eve's channel C2 is an erasure channel, or a combinatorial variation thereof. Polar codes were recently invented by Arikan; they approach the capacity of symmetric binary-input discrete memoryless channels with low encoding and decoding complexity. In this paper, we use polar codes to construct a coding scheme that achieves the secrecy capacity for a wide range of wiretap channels. Our construction works for any instantiation of the wiretap channel model, as long as both C1 and C2 are symmetric and binary-input, and C2 is degraded with respect to C1. Moreover, we show how to modify our construction in order to provide strong security, in the sense defined by Maurer, while still operating at a rate that approaches the secrecy capacity. In this case, we cannot guarantee that the reliability condition will also be satisfied unless the m- - ain channel C1 is noiseless, although we believe it can be always satisfied in practice.

Published in:

Information Theory, IEEE Transactions on  (Volume:57 ,  Issue: 10 )